
Indian Institute of Technology Kharagpur
Department of Computer Science and Engineering

American Sign Language Recognizer

Holy Walkamolies
Under the Guidance of Prof. Pabitra Mitra

and
Prof. Jhareshwar Maiti

A report
Submitted in fulfilment for the Term Project in

Machine Learning (CS60050)

Teaching Assistant : Mr. Anirban Santara

Submitted on 15th November 2016

Signature:

Abstract

American Sign Language is one of the most important tools for communication for people with hearing

and speaking disabilities. However, these disabilities make it really difficult for them to perform

communication tasks with people who are unable to understand their language. To this end, in our

term project, we have tried to create a recognizer for this using DataGloves for reading data and have

used Machine Learning to train our classification models. We present a comparison for all the common

models that have been tried and used for this purpose and we present our accuracy at detection of

words after training our models on character and digits as a comparison across all the implemented

models.

i

Contents

Abstract i

1 Introduction 2

1.1 Motivation and Objectives . 2

1.2 Literature Review . 3

1.3 Technological Support . 4

2 Background For Prediction Models 6

2.1 Decision Trees . 6

2.1.1 Boosted Trees . 7

2.1.2 Random Forests . 7

2.2 Support Vector Machines . 7

2.3 Artificial Neural Networks . 8

3 Implementation Work 10

3.1 Data Collection and Cleaning Methodoloy . 10

3.2 Digit Recognition . 11

3.2.1 Model Comparison . 11

3.3 Character & Word Recognition . 12

ii

1

3.3.1 Model Comparison . 12

3.4 Future Work . 13

Bibliography 14

Chapter 1

Introduction

1.1 Motivation and Objectives

To implement a Sign Language Recognizer, we have to keep in mind that a lot of research has already

been done about this problem. For our specific solution, the first place to look to would be the

existing literature in this and the methodologies they employ with the technology they use on which

they support their method and the benefits and pitfalls of any methodology and technology they are

trying to implement it by.

The final goal is to make a communication bridge for deaf/mute people to enable them to participate

in conversations like everyone else using the technology around them.

The sign language gestures are to be converted to text according to the American Sign Language

Standard (ASL) using flex sensing gloves and position and angle sensors. The project was implemented

in two phases : Number and Character Recognition.

The dataset was recorded using the SDT Sensory Gloves :

• Numbers

• Character and words

Data was processed and divided into training and test sets randomly.

• For Number data set :

Created different classification models and tested for accuracy

2

1.2. Literature Review 3

• For character data set:

Created classification models for individual characters and used the models for predicting recorded

words and tested for accuracy

1.2 Literature Review

Since the problem of easing communication with disabled people for people who do not understand

their sign language is not a new one, there were a lot of articles, surveys and implementation designs

which had already been worked on. The first task in such a case becomes to go through the reading

material and figure out if any methodology is helpful to our situation, in terms of the input and testing

apparatus.

This paper [1] surveys all the existing Glove based systems and their input and output patters, sensor

sets and precision. It also discusses some of the most important data features for a data glove to be

used for the task of Sign Language Recognition.

These papers[2][3][4] discuss implementations highly similar to our with a data glove which returns

flexion values based on angle measurement or pressure values and a 3-D tracker system to detect

orientation. This paper[5] reviews the differences between the most common language symbolism for

Sign Language and we used this to overcome our problem of not having an orientation data in our

datasets by replacing symbols with non orientation based symbols wherever possible yet keeping it

closest to the American Sign Language model.

The current implementation uses the following chart as its basis for the implementation of classification

and recognition.

Figure 1.1: ASL Symbols for digits

The implementation of Characters and Words uses the following diagram as its basis. There are

4 Chapter 1. Introduction

few cases where we implemented an orientation based version with tweaks to make the orientation

unimportant for the learning model.

Figure 1.2: ASL Symbols for Characters A - Z

This work[6] implemented an Artificial Neural Network based model and obtained very high using

that. That gave us the hint that an ANN based model would help us most with properly implemented

weights.

Most papers implementing the model had only used a single implementation using HMM-GMMs or in

a few newer cases, Artificial Neural Networks and in all cases, the output precision remained generally

high. Their implementation methodology made our plan for implementation easy since we decided

to test for the most implemented classification models and ran our dataset on it for learning and

subsequent testing.

Finally, this work[7] describes an implementation of a real-time continuous stream based sign to text

translation which could be very important if we decide to scale this project upwards and decide to

implement a working demonstration of it. It works on using HMMs and GMM to model the transition

states and symbolic states of the input to map to the output.

1.3 Technological Support

The entire technological support for our final decision to choose a SDT Sensory Glove with flexion

sensors as our input was taken because of the support from the Virtual Reality Lab in the De-

partment of Industrial and Systems Engineering. All our data collection happened using Data

1.3. Technological Support 5

Gloves with an IMAX 3D Projector for input.

Each DataGlove has 14 sensors which measure the pressure (or flexion) readings at the rate of 64

packets/s. It auto calibrates at the beginning of a session and then at every orientation for a sign

in the sign language format, both for Digits and Text, we save an output of about 8-12 seconds to

have enough data to run our classification models on.

The data was collected in multiple phases by the team for:

1. Digits (20 sets of each digit with approximately 600 - 1000 readings in each)

2. Characters (20 sets of each character from A to Z with approximately 800-1000 readings in each)

3. Words (Set of 50 most commonly used words with 2 sets as a comparison data)

Chapter 2

Background For Prediction Models

The first step in the Sign Language Recognition, after we have the mappings of text to sign for Digits,

Characters and Words is to decide how to create a system that can take this feature set as our input

and then predict the symbol given a random feature vector. This is where the Machine Learning

comes into play. In this section, we are going to discuss the different Machine Learning models we

have run our data on and how each one works and how each differs from the others. The symbol

mappings have already been discussed in the Literature Review on this problem. Hence, we need our

models to be trained with the given data.

2.1 Decision Trees

Decision Trees are a predictive model used to map observations about an item to conclusions about

the item’s target value. The goal is to create a model that predicts the value of a target variable

based on several input variables. An example is shown in the diagram at right. Each interior node

corresponds to one of the input variables; there are edges to children for each of the possible values of

that input variable. Each leaf represents a value of the target variable given the values of the input

variables represented by the path from the root to the leaf.

A decision tree is a simple representation for classifying examples. For this section, assume that all of

the features have finite discrete domains, and there is a single target feature called the classification.

Each element of the domain of the classification is called a class. A decision tree or a classification

tree is a tree in which each internal (non-leaf) node is labeled with an input feature. The arcs coming

6

2.2. Support Vector Machines 7

from a node labeled with a feature are labeled with each of the possible values of the feature. Each

leaf of the tree is labeled with a class or a probability distribution over the classes.

Figure 2.1: A Decison Tree Example

2.1.1 Boosted Trees

It is an optimization on the classical Decision Trees Classifier which builds the model in a stage-wise

fashion and generalizes them by allowing optimization of an arbitrary differentiable loss function.

2.1.2 Random Forests

It is another optimization of the Classical Decision Trees where we construct a multitude of decision

trees at training time and outputs the class that is the mode of the classes (classification) or mean

prediction (regression) of the individual trees.

Figure 2.2: Random Trees Visualisation

2.2 Support Vector Machines

Support Vector Machines (SVMs) are supervised learning models with associated learning algorithms

that analyze data used for classification and regression analysis. Given a set of training examples,

8 Chapter 2. Background For Prediction Models

each marked as belonging to one or the other of two categories, an SVM training algorithm builds a

model that assigns new examples to one category or the other, making it a non-probabilistic binary

linear classifier. An SVM model is a representation of the examples as points in space, mapped so

that the examples of the separate categories are divided by a clear gap that is as wide as possible.

New examples are then mapped into that same space and predicted to belong to a category based on

which side of the gap they fall on.

Figure 2.3: An SVM Example in 2 dimensions

In a Support Vector Machines, a data point is viewed as a p-dimensional vector (a list of p numbers),

and we want to know whether we can separate such points with a (p−1) dimensional hyperplane. This

is called a linear classifier. There are many hyperplanes that might classify the data. One reasonable

choice as the best hyperplane is the one that represents the largest separation, or margin, between

the two classes. So we choose the hyperplane so that the distance from it to the nearest data point

on each side is maximized.

2.3 Artificial Neural Networks

Neural Networks are a computational approach which is based on a large collection of neural units

loosely modeling the way the brain solves problems with large clusters of biological neurons connected

by axons. Each neural unit is connected with many others, and links can be enforcing or inhibitory

in their effect on the activation state of connected neural units. Each individual neural unit may have

a summation function which combines the values of all its inputs together. There may be a threshold

function or limiting function on each connection and on the unit itself such that it must surpass it

before it can propagate to other neurons. These systems are self-learning and trained rather than

explicitly programmed and excel in areas where the solution or feature detection is difficult to express

in a traditional computer program.

2.3. Artificial Neural Networks 9

The word network in the term ’artificial neural network’ refers to the interconnections between the

neurons in the different layers of each system. An example system has three layers. The first layer

has input neurons which send data via synapses to the second layer of neurons, and then via more

synapses to the third layer of output neurons. More complex systems will have more layers of neurons,

some having increased layers of input neurons and output neurons. The synapses store parameters

called ”weights” that manipulate the data in the calculations.

Figure 2.4: AN ASR Example

An ANN is typically defined by three types of parameters:

• The interconnection pattern between the different layers of neurons

• The learning process for updating the weights of the interconnections

• The activation function that converts a neuron’s weighted input to its output activation.

Chapter 3

Implementation Work

3.1 Data Collection and Cleaning Methodoloy

SDT Sensory Gloves provide flexion data from fourteen sensors. For every usage run, they need to

calibrated against a minimum and maximum flexion so that they don’t give random errors in the

readings.

Normalization of the readings :

The values for every orientation is according to a basic calibration on wearing the gloves for the first

time; i.e, max and min sensor values were recorded for each sensor separately and the recorded values

were normalized between 0 and 1 using the calibration results:

V alue = (V alue−min calibration)
(max calibration)

The Data was recorded by every member of the team for each character/number and the readings

were received in a .csv format file :

Input features :

• Fourteen flexion sensor readings, hence X [dimension = 14]

Output :

• Y : Classification between 11 classes; i.e, digit values from 0 - 10 (For the digit classification)

10

3.2. Digit Recognition 11

3.2 Digit Recognition

From Figure 1.1, we can see clearly that for every unique number, we would be getting a unique vector

as our features and that is what we have trained our models on which have all been described and

explained in the Background section. For Support Vector Machines, we used two kernels to check

which one could map the best to the input.

3.2.1 Model Comparison

Classifier Model Precision

Artificial Neural Networks 99.18

Boosted Tree Classifier 98.95

Random Forest Classifier 97.02

Decision Tree Classifier 95.51

SVM(kernel = linear) 87.69

SVM(kernel = rbf) 85.15

This implementation seems to have a very high accuracy but it is also the case that since this is static

input, mapping of input states to output is really easy here. From the table and the corresponding

Figure 3.1: Precision vs Classifier Models for Digit Recognition

histogram chart, we are able to gather a few relevant points:

• The topology of the manifold of gestures is not suitable for RBF kernel

• The linear kernel is more suited than the RBF kernel for this manifold

12 Chapter 3. Implementation Work

• Decision trees work better than SVM-Kernel machines because of their ability to model nonlinear

decision boundaries efficiently through a piece-wise linear approximation

• A random forest (ensemble of decision trees) generalizes better than a single decision tree

• A deep learning artificial neural network performed the best through data-driven representation

learning from a huge amount of data

3.3 Character & Word Recognition

The Character and Word recognition model are based on symbols from Figure 1.2. Every character

can be its upper case or lower case version depending on where it occurs in the word. Along with the

characters, we also took the data for the most common 50 words used in the vocabulary. This was

used as our test set for the model generation. We created a model for character recognition, similar

to our model for digit recognition and then, in order to test the algorithm, we followed four steps:

1. Implemented the models on a dataset of sentences which were also recorded manually

2. A continuous stream of characters was obtained

3. The unique characters were separated from the string

4. Then with the help of a dictionary, we modeled the string distribution to obtain the individual

words

3.3.1 Model Comparison

Classifier Model Precision

Artificial Neural Networks 99.95

Boosted Tree Classifier 99.92

Random Forest Classifier 99.54

Decision Tree Classifier 98.13

SVM(kernel = rbf) 98.32

Our model for word recognition seems to give a very high accuracy for all cases, even more so than

word which was an 11 element output vector compared to our Character set, which is a 37 element

vector (11 digits + 26 characters) and it worked on all the models very well.

3.4. Future Work 13

Form the table for this and the corresponding histogram, we can draw a few conclusions:

• The decision tree classifier seems to have a problem when trying to classify between so many

classes of output.

• The deep learning ANN implementation still performed the best because of its data-driven

representation learning especially given the high number of output classes.

• A Boosted Decision Tree still gives results comparable to the ANN Classifier because of the same

piece-wise linear approximation

• Also, the rbf kernel for the SVM seems to perform better when mapped to character data which

was not the case in the digits model. However, it still lags behind in accuracy to ANN and

Boosted Trees

Figure 3.2: Precision vs Classifier Models for Word Prediction

3.4 Future Work

The work implemented in this project gives us a model for American Sign Language recognition for

individual words and simple sentences given the flexion data from sensors. Future work on this project

would focus on three parts:

1. Extending the model to take care of non static input with continuous variation and marking

symbol states and transition states for the input to provide a workable input to the classifier.

14 Chapter 3. Implementation Work

2. Extending the model to check for correct sentence formation resulting in detection of even

complicated sentences correctly by creating an LSTM based classifier for that.

3. Extending the model to work directly with a stream of input and provide real-time translation

of the symbols made with the gloves to the text

4. Finally, creating an open source application encompassing the above tasks with a proper GUI

interface

Bibliography

[1] Laura Dipietro, Angelo M Sabatini, and Paolo Dario. A survey of glove-based systems and their

applications. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 38(4):461–482, 2008.

[2] Neelesh Sarawate, Ming Chan Leu, and CEMİL ÖZ. A real-time american sign language word

recognition system based on neural networks and a probabilistic model. Turkish Journal of Elec-

trical Engineering & Computer Sciences, 23(Sup. 1):2017–2123, 2015.

[3] J Bukhari, Maryam Rehman, Saman Ishtiaq Malik, Awais M Kamboh, and Ahmad Salman. Amer-

ican sign language translation through sensory glove; signspeak. Int. J. u-and e-Service, Science

and Technology, 8, 2015.

[4] Wu jiangqin, Gao wen, Song yibo, Liu wei, and Pang bo. A simple sign language recognition system

based on data glove. In Signal Processing Proceedings, 1998. ICSP ’98. 1998 Fourth International

Conference on, volume 2, pages 1257–1260 vol.2, 1998.

[5] Neelam K Gilorkar and Manisha M Ingle. A review on feature extraction for indian and american

sign language. IJCSIT) International journal of computer Science and information Technologies,

5(1):314–318, 2014.

[6] Olga Katzenelson and Solange Karsenty. A sign-to-speech glove. In workshop IUI2014 on Inter-

acting with Smart Objects, Germany, 2014.

[7] Kehuang Li, Zhengyu Zhou, and Chin-Hui Lee. Sign transition modeling and a scalable solution

to continuous sign language recognition for real-world applications. ACM Trans. Access. Comput.,

8(2):7:1–7:23, January 2016.

15

